Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network.
نویسندگان
چکیده
Quorum sensing is a bacterial mechanism used to synchronize the coordinated response of a microbial population. Because quorum sensing in Gram-negative bacteria depends on release and detection of a diffusible signaling molecule (autoinducer) among a multicellular group, it is considered a simple form of cell-cell communication for the purposes of mathematical analysis. Stochastic equation systems have provided a common approach to model biochemical or biophysical processes. Recently, the effect of noise to synchronize a specific homogeneous quorum sensing network was successfully modeled using a stochastic equation system with fixed parameters. The question remains of how to model quorum sensing networks in a general setting. To address this question, we first set a stochastic equation system as a general model for a heterogeneous quorum sensing network. Then, using two relevant biophysical characteristics of Gram-negative bacteria (the permeability of the cell membrane to the autoinducer and the symmetry of autoinducer diffusion) we construct the solution of the stochastic equation system at an abstract level. The solution indicates that stable synchronization of a quorum sensing network is robustly induced by an environment with a heterogenous distribution of extracellular and intracellular noise. The synchronization is independent of the initial state of the system and is solely the result of the connectivity of the cell network established through the effects of extracellular noise.
منابع مشابه
Phase Synchronization of Circadian Oscillators Induced by a Light-Dark Cycle and Extracellular Noise
Detecting RNA Sequences Using Two-Stage SVM Classifier p. 8 Frequency Synchronization of a Set of Cells Coupled by Quorum Sensing p. 21 A Stochastic Model for Prevention and Control of HIV/AIDS Transmission Dynamics p. 28 Simulation of Artificial Life of Bee's Behaviors p. 38 Hybrid Processing and Time-Frequency Analysis of ECG Signal p. 46 Robust Stability of Human Balance Keeping p. 58 Modell...
متن کاملStochastic switching in biology: from genotype to phenotype
There has been a resurgence of interest in non-equilibrium stochastic processes in recent years, driven in part by the observation that the number of molecules (genes, mRNA, proteins) involved in gene expression are often of order 1–1000. This means that deterministic mass-action kinetics tends to break down, and one needs to take into account the discrete, stochastic nature of biochemical reac...
متن کاملUltrasensitivity and noise amplification in a model of V. harveyi quorum sensing.
We analyze ultrasensitivity in a model of Vibrio harveyi quorum sensing. We consider a feedforward model consisting of two biochemical networks per cell. The first represents the interchange of a signaling molecule (autoinducer) between the cell cytoplasm and an extracellular domain and the binding of intracellular autoinducer to cognate receptors. The unbound and bound receptors within each ce...
متن کاملTransition to Quorum Sensing in an Agrobacterium Population: A Stochastic Model
Understanding of the intracellular molecular machinery that is responsible for the complex collective behavior of multicellular populations is an exigent problem of modern biology. Quorum sensing, which allows bacteria to activate genetic programs cooperatively, provides an instructive and tractable example illuminating the causal relationships between the molecular organization of gene network...
متن کاملNoise-induced cooperative behavior in a multicell system
MOTIVATION All cell components exhibit intracellular noise on account of random births and deaths of individual molecules, and extracellular noise because of environment perturbations. Gene regulation in particular, is an inherently noisy process with transcriptional control, alternative splicing, translation, diffusion and chemical modification reactions, all of which involve stochastic fluctu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 245 4 شماره
صفحات -
تاریخ انتشار 2007